Вибір міри відмінності значень зразкового та відфільтрованого біомедичних сигналів

Алексей Александрович Сергеев-Горчинский

Анотація


У статті розглянуто вибір міри відмінності результатів фільтрації спотворених біомедичних сигналів в задачі пошуку оптимальних значень параметра цифрового фільтра нижніх частот "просте ковзне середнє". Для порівняння були вибрані міри відмінності – середньоквадратична помилка, корінь середньоквадратичної помилки, середня абсолютна помилка. Виконана серія експериментів з генеруванню та фільтрації спотворених сигналів. В результаті порівняння визначена міра, для якої характерна більша кількість знайдених локальних оптимальних значень параметра цифрового фільтра за високих рівнів флуктуаційної завади.


Ключові слова


дискретний сигнал; цифровий фільтр; ковзне середнє; оптимальний параметр; міра відмінності

Повний текст:

PDF (Русский)

Посилання


Sergienko, A. B. (2011). Cifrovaya obrabotka signalov. Sankt-Peterburg, 593–595.

Cha, S.-H. (2007). Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions. International journal of mathematical models and methods in applied sciences, 1 (4), 300–307.

Willmott, C., Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30, 79–82. doi: 10.3354/cr030079

Willmott, C. J., Matsuura, K. (2006). On the use of dimensioned measures of error to evaluate the performance of spatial interpolators. International Journal of Geographical Information Science, 20(1), 89–102. doi:10.1080/13658810500286976

Chai, T., Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7 (3), 1247–1250. doi: 10.5194/gmd-7-1247-2014

Serheiev-Horchynskyi, O. (2017). Selection of error measure for reference and filtered periodic signals at high levels of fluctuating noise. Summer InfoCom 2017: Conference Proceedings. Kyiv, 100–103.

Serheiev-Horchynskyi, O. O. (2017). Selection of error measure for reference and filtered periodic signals in the problem of searching for optimum values of digital filter parameters at high levels of fluctuating noise. Measuring and Computing Devices in Technological Processes, 58 (2), 123–130.

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G. et. al. (2000). PhysioBank, PhysioToolkit, and PhysioNet : Components of a New Research Resource for Complex Physiologic Signals. Circulation, 101 (23), e215–e220. doi: 10.1161/01.cir.101.23.e215

Lind, B. K., Goodwin, J. L., Hill, J. G., Ali, T., Redline, S., & Quan, S. F. (2003). Recruitment of Healthy Adults into a Study of Overnight Sleep Monitoring in the Home: Experience of the Sleep Heart Health Study. Sleep and Breathing, 7(1), 13–24. doi:10.1007/s11325-003-0013-z

Oppenheim, A. V., Schafer, R. W. (2010). Discrete-Time Signal Processing. London, 1055.


Пристатейна бібліографія ГОСТ


Сергиенко, А. Б. Цифровая обработка сигналов [Текст] / А. Б. Сергиенко. – 3-е изд. – Санкт-Петербург, 2011. – C. 593–595.

Cha, S.-H. Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions [Text] / S.-H. Cha // International journal of mathematical models and methods in applied sciences. – 2007. – Vol. 1, Issue 4. – P. 300–307.

Willmott, C. J. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance [Text] / C. J. Willmott, K. Matsuura // Climate Research. – 2005. – Vol. 30. – P. 79–82. doi: 10.3354/cr030079 

Willmott, C. J. On the use of dimensioned measures of error to evaluate the performance of spatial interpolators [Text] / C. J. Willmott, K. Matsuura // International Journal of Geographical Information Science. – 2006. – Vol. 20, No. 1. – P. 89–102. doi:10.1080/13658810500286976

Chai, T. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature [Text] / T. Chai, R. R. Draxler // Geoscientific Model Development. – 2014. – Vol. 7, Issue 3. – P. 1274–1250. doi: 10.5194/gmd-7-1247-2014 

Serheiev-Horchynskyi, O. Selection of error measure for reference and filtered periodic signals at high levels of fluctuating noise [Text] / O. Serheiev-Horchynskyi // Summer InfoCom 2017: Conference Proceedings. – Kyiv, 2017. – P. 100–103.

Cергеев-Горчинский, А. А. Выбор меры различия образцового и отфильтрованного периодических сигналов в задаче поиска оптимальных значений параметра цифрового фильтра при высоких уровнях флуктуационного шума [Текст] / А. А. Cергеев-Горчинский // Вимірювальна та Обчислювальна Техніка в Технологічних Процесах. – 2017. – Т. 58, № 2. – С. 123–130.

Goldberger, A. L. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals [Text] / A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark et. al. // Circulation. – 2000. – Vol. 101, Issue 23. – P. e215–e220. doi: 10.1161/01.cir.101.23.e215 

Lind, B. K. Recruitment of Healthy Adults into a Study of Overnight Sleep Monitoring in the Home: Experience of the Sleep Heart Health Study [Text] / B. K. Lind, J. L. Goodwin, J. G. Hill, T. Ali, S. Redline, S. F. Quan // Sleep and Breathing. – 2003. – No. 7 (1). – P. 13–24. doi: 10.1007/s11325-003-0013-z

Oppenheim, A. V. Discrete-Time Signal Processing [Text] / A. V. Oppenheim, R. W. Schafer. – 3-rd ed. – London, 2010. – 1055 p.



Посилання

  • Поки немає зовнішніх посилань.




Copyright (c) 2017 Алексей Александрович Сергеев-Горчинский

Creative Commons License
Ця робота ліцензована Creative Commons Attribution 4.0 International License.

ISSN 2411-2828 (Online), ISSN 2411-2798 (Print)