Класифікация наземних мобільних роботів

Автор(и)

  • Александр Игоревич Круглов Київський національний університет Тараса Шевченко вул. Ванди Василевської, 24, м. Київ, Україна, 02000, Україна

Ключові слова:

робототехнічні системи, наземні мобільні роботи, сфера та середа вікористання, типии керування.

Анотація

В данній статті розглядається классифікация мобільних робототехнічних систем в залежності від їх середи та сфери використання, кінематики, классу, а також типу керування. Для наземних мобільних роботів також виділені підкласси, проведен аналіх їх переваг та недоліків. Проаналізовано вибір типу керування в залежності від сфери використання робота. Результати можуть бути використані для вибору або розробки власної мобільної робототехнічної системи. 

Біографія автора

Александр Игоревич Круглов, Київський національний університет Тараса Шевченко вул. Ванди Василевської, 24, м. Київ, Україна, 02000

магістр математики
аспірант кафедри "Інтеллектулальних та інформаційних систем"

Посилання

Zhang, H. Mobile Robotics. Available at: https://tams.informatik.uni-hamburg.de/lehre/2010ss/seminar/ir/PDF/MobilerobotLecture3_Review%20on%20mobile%20robot.pdf

Proydakov, E. M. Klassifikatsiya mobil'nyh robotov. Available at: https://postnauka.ru/video/34424

Astapkovich, A. M., Sergeev, M. B. (2003). Mobil'nye roboty i kompleksy na ih osnove. Ekstremal'naya robototekhnika. Sankt-Peteburg.

Kapila, V. Introduction to Robotics. Available at: http://engineering.nyu.edu/mechatronics/smart/pdf/Intro2Robotics.pdf

Vasil'ev, A. V. (2014). Obobshchennaya klassifikatsiya mobil'nyh robotov. Ekstremal'naya robototekhnika, 41–45.

Bülthoff, H. H. Flying Robots and Flying Cars. Available at: http://www.kyb.tuebingen.mpg.de/fileadmin/user_upload/files/publications/2012/KAIST-2012-key.pdf

Giguere, P., Girdhar, Y., Dudek, G. (2013). Wide-Speed Autopilot System for a Swimming Hexapod Robot. 2013 International Conference on Computer and Robot Vision. doi: 10.1109/crv.2013.13

Meger, D., Shkurti, F., Poza, D. C., Giguere, P., Dudek, G. (2014). 3D trajectory synthesis and control for a legged swimming robot. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi: 10.1109/iros.2014.6942867

Floyd, S., Keegan, T., Palmisano, J., Sitti, M. (2006). A Novel Water Running Robot Inspired by Basilisk Lizards. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi: 10.1109/iros.2006.282111

Suhr, S. H., Seong Song, Y., Lee, S. J., Sitti, M. (2005). Biologically Inspired Miniature Water Strider Robot. Robotics: Science and Systems I. doi: 10.15607/rss.2005.i.042

Borenstein, J. The HoverBot C An Electrically Powered Flying Robot. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.8963&rep=rep1&type=pdf

Araki, B., Strang, J., Pohorecky, S., Qiu, C., Naegeli, T., Rus, D. (2017). Multi-robot path planning for a swarm of robots that can both fly and drive. 2017 IEEE International Conference on Robotics and Automation (ICRA). doi: 10.1109/icra.2017.7989657

Alkurdi, L. M., Fisher, R. B. (2013). Visual Control of an Autonomous Indoor Robotic Blimp. Robotic Vision: Technologies for Machine Learning and Vision Applications, 352–370. doi: 10.4018/978-1-4666-2672-0.ch019

Karpelson, M., Whitney, J. P., Wei, G.-Y., Wood, R. J. (2010). Energetics of flapping-wing robotic insects: towards autonomous hovering flight. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi: 10.1109/iros.2010.5650269

Baek, S. S., Bermudez, F. L. G., Fearing, R. S. (2011). Flight control for target seeking by 13 gram ornithopter. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi: 10.1109/iros.2011.6048246

Temizer, S., Kochenderfer, M., Kaelbling, L., Lozano-Perez, T., Kuchar, J. (2010). Collision Avoidance for Unmanned Aircraft using Markov Decision Processes*. AIAA Guidance, Navigation, and Control Conference. doi: 10.2514/6.2010-8040

Poulakakis, I., Grizzle, J. W. (2009). Modeling and control of the monopedal robot Thumper. 2009 IEEE International Conference on Robotics and Automation. doi: 10.1109/robot.2009.5152708

Wahde, M., Pettersson, J. (2002). A brief review of bipedal robotics research. 8th Mechatronics Forum International Conference.

Kim, J.-Y., Park, I.-W., Oh, J.-H. (2006). Experimental realization of dynamic walking of the biped humanoid robot KHR-2 using zero moment point feedback and inertial measurement. Advanced Robotics, 20 (6), 707–736. doi: 10.1163/156855306777361622

Ahmed, M., R., M., Billahm M., Farhm S. (2010). Walking Hexapod Robot in Disaster Recovery: Developing Algorithm for Terrain Negotiation and Navigation. New Advanced Technologies. doi: 10.5772/9437

Oak, S., Narwane, V. (2014). Design, Analysis and Fabrication of Quadruped Robot with Four bar Chain Leg Mechanism. International Journal of Innovative Science, Engineering & Technology, 1 (6), 340–345.

Schmidt, A. Legged Robotics & BigDog. Marc Raibert: Boston Dynamics. Available at: https://webpages.uncc.edu/~jmconrad/ECGR6185-2008-01/notes/BigDogRobot_Presentation.pdf

Ma, H. W., Wang, L. Q., Chen, D. L., Hao, X. W., Luo, H. W. (2008). Design of a Crab-Like Octopod Robot. Applied Mechanics and Materials, 10-12, 263–266. doi: 10.4028/www.scientific.net/amm.10-12.263

Mir-Nasiri, N., Hussaini, S. (2005). New Intelligent Transmission Concept for Hybrid Mobile Robot Speed Control. International Journal of Advanced Robotic Systems, 2 (3), 27. doi: 10.5772/5784

Pandey, A., Jha, S., Chakravarty, D. (2017). Modeling and Control of an Autonomous Three Wheeled Mobile Robot with Front Steer. 2017 First IEEE International Conference on Robotic Computing (IRC). doi: 10.1109/irc.2017.67

Wasuntapichaikul, P., Sukvichai, K., Tipsuwan, Y. Implementation of torque controller for brushless motors on the omni-directional wheeled mobile robot. Available at: https://arxiv.org/abs/1708.02271

Lee, G. H., Jung, S. (2013). Line Tracking Control of a Two-Wheeled Mobile Robot Using Visual Feedback. International Journal of Advanced Robotic Systems, 10 (3), 177. doi: 10.5772/53729

Giergiel, M., Buratowski, T., Malka, P. (2011). The Mathematical Description of the Robot for the Tank Inspection. Mechanics and Mechanical Engineering, 15 (4), 53–60.

Schwarz, M., Rodehutskors, T., Schreiber, M., Behnke, S. (2016). Hybrid driving-stepping locomotion with the wheeled-legged robot Momaro. 2016 IEEE International Conference on Robotics and Automation (ICRA). doi: 10.1109/icra.2016.7487776

Xiao, X., Cappo, E., Zhen, W., Dai, J., Sun, K., Gong, C. et. al. (2015). Locomotive reduction for snake robots. 2015 IEEE International Conference on Robotics and Automation (ICRA). doi: 10.1109/icra.2015.7139718

Xian-yi, C., Shu-qin, L., De-shen, X. (2005). Study of Self-Organization Model of Multiple Mobile Robot. International Journal of Advanced Robotic Systems, 2 (3), 23. doi: 10.5772/5785

Owano, N. Handle: Boston Dynamics robot on wheels performs on stage. Available at: https://techxplore.com/news/2017-02-boston-dynamics-robot-wheels-stage.html

Yan, Z., Jouandeau, N., Cherif, A. A. (2013). A Survey and Analysis of Multi-Robot Coordination. International Journal of Advanced Robotic Systems, 10 (12), 399. doi: 10.5772/57313

Chavan, D., Annadate, S. A. (2013). A Surveillance Robot with Climbing Capabilities for Home Security. International Journal of Computer Science and Mobile Computing, 2 (11), 291–296.

Khalid, U., Baloch, M. F., Haider, H., Sardar, M. U. et. al. Smart Floor Cleaning Robot (CLEAR). Available at: http://www.standardsuniversity.org/wp-content/uploads/Smart-Floor-Cleaning-Robot-CLEAR.pdf

Pedersen, L., Kortenkamp, D., Wettergreen, D., Nourbakhsh, I. A Survey Of Space Robotics. Available at: http://wayback.archive-it.org/1792/20100207195709/http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20030054507_2003061124.pdf

Zaborovskiy, V. S. (2013). Kosmicheskaya robototekhnika: ot avtonomnyh ustroystv k kiber-fizicheskim sistemam. Sankt-Peterburg: Lenekspo, 18.

Shanygin, S. V. (2013). Roboty, kak sredstvo mekhanizatsii sel'skogo hozyaystva sel'hoz. Izvestiya vysshih uchebnyh zavedeniy. Mashinostroenie, 3, 39–42.

Kaurkin, I. A. (2017). Robotizatsiya v gornodobyvayushchey promyshlennosti. IX Vserossiyskaya nauchno-prakticheskaya konferentsiya molodyh uchennyh «ROSSIYA MOLODAYA». Available at: http://science.kuzstu.ru/wp-content/Events/Conference/RM/2017/RM17/pages/Articles/0305006-.pdf

Korshunov, N. Vozdushnye roboty prizvany na zashchitu i ohranu lesov. Lesnoy patrul'. Available at: https://fpatrol.ru/vozdushnye-roboty-prizvany-na-zashhitu-i-oxranu-lesov-n-korshunov/

Mishchuk, D. (2013). Ohliad ta analiz konstruktsiy robotiv dlia budivelnykh robit. Hirnychi, budivelni, dorozhni ta melioratyvni mashyny, 82, 28–37.

Kim, J.-H., Sharma, G., Iyengar, S. S. (2010). FAMPER: A fully autonomous mobile robot for pipeline exploration. 2010 IEEE International Conference on Industrial Technology. doi: 10.1109/icit.2010.5472748

Varsani, J. (2002). Robotic Football. BSc (Hons) Computing Session. Available at: https://minerva.leeds.ac.uk/bbcswebdav/orgs/SCH_Computing/FYProj/reports/0203/Varsani.pdf

Ding, I.-J., Chang, Y.-J. (2016). On the Use of Kinect Sensors to Design a Sport Instructor Robot for Rehabilitation and Exercise Training of the Elderly. Sensors and Materials. doi: 10.18494/sam.2016.1302

Prassler, E., Kosuge, K. (2008). Domestic Robotics. Springer Handbook of Robotics, 1253–1281. doi: 10.1007/978-3-540-30301-5_55

Ridao, P. An Introduction to Applied Underwater Robotics. Available at: http://www.irs.uji.es/trident/files/SIE017-Seminario-PRidao.pdf

Hassanein, A., Elhawary, M., Jaber, N., El-Abd, M. (2015). An autonomous firefighting robot. 2015 International Conference on Advanced Robotics (ICAR). doi: 10.1109/icar.2015.7251507

Simon, P. (2015). Military Robotics: Latest Trends and Spatial Grasp Solutions. International Journal of Advanced Research in Artificial Intelligence, 4 (4). doi: 10.14569/ijarai.2015.040402

Finkelstein, R. Military robotics: malignant machines or the path to peace? Available at: https://robotictechnologyinc.com/images/upload/file/Presentation%20Military%20Robotics%20Overview%20Jan%2010.pdf

Phung, M. D., Van Nguyen, T. T., Tran, T. H., Tran, Q. V. Localization of Internet-based Mobile Robot. Available at: https://arxiv.org/abs/1703.03649

Villani, V., Sabattini, L., Riggio, G., Levratti, A., Secchi, C., Fantuzzi, C. (2017). Interacting With a Mobile Robot with a Natural Infrastructure-Less Interface. IFAC-PapersOnLine, 50 (1), 12753–12758. doi: 10.1016/j.ifacol.2017.08.1829

Burgard, W., Cremers, A. B., Fox, D., Hahnel, D. (1998). The Interactive Museum Tour-Guide Robot. AAAI-98 Proceedings. Available at: https://www.aaai.org/Papers/AAAI/1998/AAAI98-002.pdf

Tsymbal, O. M., Bronnikov, A. I. (2011). Adaptivity in decision-making of robots. Eastern-European Journal of Enterprise Technologies, 4 (4 (52)), 40–43. Available at: http://journals.uran.ua/eejet/article/viewFile/1389/1287

##submission.downloads##

Опубліковано

2017-12-28

Номер

Розділ

Технології та обладнання виробництва