Вивчення контрольованого електронного переносу крізь одиночну органічну молекулу

Автор(и)

  • Світлана Вікторівна Василюк Київський національний університет імені Тараса Шевченка; вул. Володимирська, 60, м. Київ, Україна, 01033, Ukraine
  • Юрій Олександрович Мягченко Київський національний університет імені Тараса Шевченка; вул. Володимирська, 60, м. Київ, Україна, 01033, Ukraine

Ключові слова:

молекулярна електроніка, нанотехнологія, квантова хімія, одномолекулярний транзистор, механічно контрольовані розривні контакти

Анотація

Ціль дослідження полягає в тому, щоб вивчити квантовані стабільні стани на графіку залежності опору органічних молекул від часу, поміщених між механічно контрольованими наноконтактами при заданому значенні сили струму. Передбачається знайти найбільш придатні діапазони значень опору для наступного одержання вольт-амперних характеристик досліджуваних нових органічних речовин для молекулярної електроніки.

Біографії авторів

Світлана Вікторівна Василюк, Київський національний університет імені Тараса Шевченка; вул. Володимирська, 60, м. Київ, Україна, 01033

Аспірант,інженер,

Кафедра експериментальної фізики,

Фізичний факультет,

Кафедра молекулярної фізики

Юрій Олександрович Мягченко, Київський національний університет імені Тараса Шевченка; вул. Володимирська, 60, м. Київ, Україна, 01033

Кандидат фізико-математичних наук, доцент,

Кафедра експериментальної фізики,

Фізичний факультет

Посилання

Kornilovitch, P., Bratkovsky, A., Williams, S. (2003). Single-Molecule Designs for Electric Switches and Rectifiers. Annals of the New York Academy of Sciences, 1006 (1), 198–211. doi: 10.1196/annals.1292.013

Kwok, K. S., Ellenbogen, J. C. (2002). Moletronics: future electronics. Materials Today, 5(2), 28–37. doi: 10.1016/s1369-7021(02)05227-6

Mohr, P. J., Newell, D. B., Taylor, B. N. (2015). CODATA recommended values of the fundamental physical constants: 2014. doi: 10.6028/nist.sp.961r2015

Ball, P. (2007). High-density memory: a switch in time. Nature, 445, 362–363.

Green, J. E., Wook Choi, J., Boukai, A., Bunimovich, Y., Johnston-Halperin, E., DeIonno, E., Heath, J. R. (2007). A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature, 445 (7126), 414–417. doi: 10.1038/nature05462

Rinaldi, R., Maruccio, G., Biasco, A., Visconti, P., Arima, V., Cingolani, R. (2003). A Protein-Based Three Terminal Electronic Device. Annals of the New York Academy of Sciences, 1006 (1), 187–197. doi: 10.1196/annals.1292.012

Chandrakasan, A., Bowhill, W. J., Fox, F. (2000). Design of High-Performance Microprocessor Circuits. Wiley-IEEE Press, 578. doi: 10.1109/9780470544365

Landauer, R. (1975). Spatial conductivity modulation at metallic point defects. Journal of Physics C: Solid State Physics, 8 (6), 761–766. doi: 10.1088/0022-3719/8/6/006

Black, J. R. (1969). Electromigration—A brief survey and some recent results. IEEE Transactions on Electron Devices, 16 (4), 338–347. doi: 10.1109/t-ed.1969.16754

Murayama, H., Yamazaki, M., Nakajima, S. (2001). Electromigration and electrochemical reaction mixed failure mechanism in gold interconnection system. Microelectronics Reliability, 41 (8), 1265–1272. doi: 10.1016/s0026-2714(01)00112-3

Krumbein, S. (1988). Metallic Electromigration Phenomena. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 11 (1), 5–15. doi: 10.1109/tchmt.1988.113488

Black, J. R. (1970). RF power transistor metallization failure. IEEE Transactions on Electron Devices, 17 (9), 800–803. doi: 10.1109/t-ed.1970.17077

Ames, I., Heurle, F. M., Horstmann, R. E. (1970). Reduction of Electromigration in Aluminum Films by Copper Doping. IBM Journal of Research and Development, 14 (4), 461–463. doi: 10.1147/rd.144.0461

Hu, C.-K., Rodbell, K. P., Sullivan, T. D., Lee, K. Y., Bouldin, D. P. (1995). Electromigration and stress-induced voiding in fine Al and Al-alloy thin-film lines. IBM Journal of Research and Development, 39 (4), 465–497. doi: 10.1147/rd.394.0465

Thompson, C. V., Kahn, H. (1993). Effects of microstructure on interconnect and via reliability: Multimodal failure statistics. Journal of Electronic Materials, 22 (6), 581–587. doi: 10.1007/bf02666402

D’ Heurle, F. M. (1971). Electromigration and failure in electronics: An introduction. Proceedings of the IEEE, 59 (10), 1409–1418. doi: 10.1109/proc.1971.8447

International Electron Devices Meeting. IEDM Technical Digest. (1997). International Electron Devices Meeting IEDM Technical Digest IEDM-97. doi: 10.1109/iedm.1997.649430

Selzer, Y., Cabassi, M. A., Mayer, T. S., Allara, D. L. (2004). Temperature effects on conduction through a molecular junction. Nanotechnology, 15 (7), S483–S488. doi: 10.1088/0957-4484/15/7/057

Landauer, R. (1976). Spatial carrier density modulation effects in metallic conductivity. Physical Review B, 14 (4), 1474–1479. doi: 10.1103/physrevb.14.1474

Mahapatro, A. K., Ghosh, S., Janes, D. B. (2005). Pairs of Gold Electrodes with Nanometer Separation Performed over SiO2 Substrates with a Molecular Adhesion Monolayer. Available at: https://arxiv.org/pdf/cond-mat/0503656.pdf

Liang, W., Shores, M. P., Bockrath, M., Long, J. R., Park, H. (2002). Kondo resonance in a single-molecule transistor. Nature, 417 (6890), 725–729. doi: 10.1038/nature00790

Jiang, T., Cheung, N. W., Chenming Hu. (1994). An electromigration failure model for interconnects under pulsed and bidirectional current stressing. IEEE Transactions on Electron Devices, 41 (4), 539–545. doi: 10.1109/16.278507

Ramachandran, G. K., Edelstein, M. D., Blackburn, D. L., Suehle, J. S., Vogel, E. M., & Richter, C. A. (2005). Nanometre gaps in gold wires are formed by thermal migration. Nanotechnology, 16 (8), 1294–1299. doi: 10.1088/0957-4484/16/8/052

Tour, J. M., Jones, L., Pearson, D. L., Lamba, J. J. S., Burgin, T. P., Whitesides, G. M., … Atre, S. (1995). Self-Assembled Monolayers and Multilayers of Conjugated Thiols, .alpha.,.omega.-Dithiols, and Thioacetyl-Containing Adsorbates. Understanding Attachments between Potential Molecular Wires and Gold Surfaces. Journal of the American Chemical Society, 117 (37), 9529–9534. doi: 10.1021/ja00142a021

Van Wees, B. J., van Houten, H., Beenakker, C. W. J., Williamson, J. G., Kouwenhoven, L. P., van der Marel, D., Foxon, C. T. (1988). Quantized conductance of point contacts in a two-dimensional electron gas. Physical Review Letters, 60 (9), 848–850. doi: 10.1103/physrevlett.60.848

Park, J., Pasupathy, A. N., Goldsmith, J. I., Chang, C., Yaish, Y., Petta, J. R., Ralph, D. C. (2002). Coulomb blockade and the Kondo effect in single-atom transistors. Nature, 417 (6890), 722–725. doi: 10.1038/nature00791

Ochs, R., Secker, D., Elbing, M., Mayor, M., Weber, H. B. (2006). Fast temporal fluctuations in single-molecule junctions. Faraday Discuss, 131, 281–289. doi: 10.1039/b506390f

Kushmerick, J. G., Naciri, J., Yang, J. C., Shashidhar, R. (2003). Conductance Scaling of Molecular Wires in Parallel. Nano Letters, 3 (7), 897–900. doi: 10.1021/nl034201n

Blum, A. S., Kushmerick, J. G., Long, D. P., Patterson, C. H., Yang, J. C., Henderson, J. C., Ratna, B. R. (2005). Molecularly inherent voltage-controlled conductance switching. Nature Materials, 4 (2), 167–172. doi: 10.1038/nmat1309

Vasylyuk, S. V., Yashchuk, V. M., Viniychuk, O. O., Piryatinski, Y. P., Sevryukova, M. M., Gerasov, A. O., Kachkovsky, O. D. (2011). The Investigation of Relaxation Paths in Dioxaborine Anionic Polymethine Dyes Detected by Low-Temperature Time-Resolved Fluorescence. Molecular Crystals and Liquid Crystals, 535 (1), 123–131. doi: 10.1080/15421406.2011.537959

##submission.downloads##

Опубліковано

2017-04-24

Номер

Розділ

Матеріалознавство